skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Campbell, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The single-ion Penning trap (SIPT) at the Low-Energy Beam Ion Trapping Facility has been developed to perform precision Penning trap mass measurements of single ions, ideal for the study of exotic nuclei available only at low rates at the Facility for Rare Isotope Beams (FRIB). Single-ion signals are very weak—especially if the ion is singly charged—and the few meaningful ion signals must be disentangled from an often larger noise background. A useful approach for simulating Fourier transform ion cyclotron resonance signals is outlined and shown to be equivalent to the established yet computationally intense method. Applications of supervised machine learning algorithms for classifying background signals are discussed, and their accuracies are shown to be ≈65% for the weakest signals of interest to SIPT. Additionally, a deep neural network capable of accurately predicting important characteristics of the ions observed by their image charge signal is discussed. Signal classification on an experimental noise dataset was shown to have a false-positive classification rate of 10.5%, and 3.5% following additional filtering. The application of the deep neural network to an experimental 85Rb+ dataset is presented, suggesting that SIPT is sensitive to single-ion signals. Lastly, the implications for future experiments are discussed. 
    more » « less
  2. Sensing films based on polymer–plasticizer coatings have been developed to detect volatile organic compounds (VOCs) in the atmosphere at low concentrations (ppm) using quartz crystal microbalances (QCMs). Of particular interest in this work are the VOCs benzene, ethylbenzene, and toluene which, along with xylene, are collectively referred to as BTEX. The combinations of four glassy polymers with five plasticizers were studied as prospective sensor films for this application, with PEMA-DINCH (5%) and PEMA-DIOA (5%) demonstrating optimal performance. This work shows how the sensitivity and selectivity of a glassy polymer film for BTEX detection can be altered by adding a precise amount and type of plasticizer. To quantify the film saturation dynamics and model the absorption of BTEX analyte molecules into the bulk of the sensing film, a diffusion study was performed in which the frequency–time curve obtained via QCM was correlated with gas-phase analyte composition and the infinite dilution partition coefficients of each constituent. The model was able to quantify the respective concentrations of each analyte from binary and ternary mixtures based on the difference in response time (τ) values using a single polymer–plasticizer film as opposed to the traditional approach of using a sensor array. This work presents a set of polymer–plasticizer coatings that can be used for detecting and quantifying the BTEX in air, and discusses the selection of an optimum film based on τ, infinite dilution partition coefficients, and stability over a period of time. 
    more » « less
  3. The Asian tiger mosquito ( Aedes albopictus ) arrived in the USA in the 1980’s and rapidly spread throughout eastern USA within a decade. The predicted northern edge of its overwintering distribution on the East Coast of the USA roughly falls across New York, Connecticut, and Massachusetts, where the species has been recorded as early as 2000. It is unclear whether Ae. albopictus populations have become established and survive the cold winters in these areas or are recolonized every year. We genotyped and analyzed populations of Ae. albopictus from the northeast USA using 15 microsatellite markers and compared them with other populations across the country and to representatives of the major global genetic clades to investigate their connectivity and stability. Founder effects or bottlenecks were rare at the northern range of the Ae. albopictus distribution in the northeastern USA, with populations displaying high levels of genetic diversity and connectivity along the East Coast. There is no evidence of population turnover in Connecticut during the course of three consecutive years, with consistent genetic structure throughout this period. Overall, these results support the presence of established populations of Ae. albopictus in New York, Connecticut, and Massachusetts, successfully overwintering and migrating in large numbers. Given the stability and interconnectedness of these populations, Ae. albopictus has the potential to continue to proliferate and expand its range northward under mean warming conditions of climate change. Efforts to control Ae. albopictus in these areas should thus focus on vector suppression rather than eradication strategies, as local populations have become firmly established and are expected to reemerge every summer. 
    more » « less